

Get Future Ready...

a Nutreco company

Preparing For The Future: Responsible use of Antibiotics for Sustainable Growth

Dr. Marcos Rostango, Technical & Innovation Director, Trouw Nutrition Global

a Nutreco company

Deaths From Drug-Resistant Infections Set To Skyrocket

Predicted mortality from antimicrobial-resistant^{*} infections (AMR) versus today's common causes of deaths

* resistant to antibiotics, antivirals, antifungals and antiparasitics Source: Bracing for Superbugs 2023 (UN Environmental Programme)

 \odot (i) =

UN®

statista 🔽

MARCH 1, 2023 | 3 MIN READ

To Fight Antimicrobial Resistance, Start with Farm Animals

Governments must regulate drug misuse in food animals that is contributing to antimicrobial resistance

BY THE EDITORS

March 2023 Issue ¥

Animals ¥

FORBES > BUSINESS

Antibiotics Use In Farm Animals Is Growing—Here's Why It Could Pose A Danger To Humans

https://www.forbes.com/sites/roberthart/2023/02/01/antibiotics-use-in-farmanimals-is-growing-heres-why-it-could-pose-a-danger-tohumans/?sh=5d1314b9200a

Antibiotics in animal production: To Use, or Not To Use...

Antibiotics in animal production: To Use, or Not To Use...

Food Safety

Sustainability

Animal Welfare

Antibiotics in Animal Production

✓ Performance enhancement = Growth promotion (GPA's or AGP's)

 \checkmark Disease prevention = Preventive or strategic use

 \checkmark Disease control and treatment = Therapeutic use

Table 1. American Veterinary Medical Association Definitions of Antimicrobial Use

Antibiotic Purpose	AVMA Definition for Individual Animals	AVMA Definition for Groups of Animals
Disease treatment	Administration of an antimicrobial as a remedy for an individual animal with evidence of infectious disease	Administration of an antimicrobial to those animals within the group with evidence of infectious disease
Disease control	Administration of an antimicrobial to an individual animal with a subclinical infection to reduce the risk of the infection becoming clinically apparent, spreading to other tissues or organs, or being transmitted to other individuals	Administration of an antimicrobial to reduce the incidence of infectious disease in a group of animals that already has some individuals with evidence of infection
Disease prevention	Administration of an antimicrobial to an individual animal to mitigate the risk for acquiring a disease or infection that is anticipated based on history, clinical judgment, or epidemiological knowledge.	Administration of an antimicrobial to a group of animals, none of which have evidence of disease or infection, when transmission of existing undiagnosed infections, or the introduction of pathogens, is anticipated based on history, clinical judgment, or epidemiological knowledge.

What does it all mean?

AGP'S OF GPA'S Antibiotics Growth Promoters Growth Promoter Antibiotics

ABF or NAE Antibiotic-Free No Antibiotics Ever

What does it all mean?

 \checkmark Reduction of competition for nutrients in the intestinal tract

✓ Reduction of growth-depressing metabolites generated by the microbiota

✓ Improvement of absorption and nutrient utilization by the intestinal tract

✓ Control of endemic subclinical infections
 → Reduction of the metabolic cost of immune response

✓ Non-antibiotic anti-inflammatory effect on the intestinal tract

Animal Production

• 'There was no significant effect of AGPs on the cumulative growth or feed efficiency parameters at the end of the production cycles and cumulative mortality rates were also similar across groups.'

Source: Effects of Dietary Antimicrobial Growth Promoters on Performance Parameters and Abundance and Diversity of Broiler Chicken Gut Microbiome and Selection of Antibiotic Resistance Genes, Paul et al, Frontiers in Microbiology, Paul et al, 2022

 'Many studies have shown no weight gain difference in broilers fed an AGP diet in the absence of health problems'

Source: Withdrawal of antibiotic growth promoters from broiler diets: performance indexes and economic impact, Poultry Science, Cardinal et al, 2019

Table 2. Production responses by livestock to antibiotic growth promoters (improvement compared with controls)

Species	Average daily gain	Feed conversion	Comment	Reference
	2.5-6%	1.5-3.5%		Swann, 1969
	2.0%	1.3%	Results from Swedish and Danish experiments performed in 1967-76 with 5-20ppm Zn-bacitracin	Elwinger, 1976
	2%	3%	Supplementation with Zn-bacitracin	Rosen, 1996
Broilers	4%	4%		Gropp and Schuhmacher, 1998
	3.9%	2.9%	Review of experiments led in the 1990s with avilamycin, avoparcin, virginiamycin, Zn-bacitracin	Thomke, 1998
	<1%	<1%	Study of 7 million broilers spanning 3 years (1998-2001)	Engster, 2002
	8%	4-6%	Estimates from data of studies conducted between 1980-1990	Gropp and Schuhmacher, 1998
Piglets	17%	9%	Review of experiments conducted between 1970-1990	Thomke, 1998
(6-20 kg)	16.4%	6.9%	Data from 453 experiments conducted between 1950-1985	Cromwell, 2002
	5%	1.4% (NSS)	Controlled trial of 24009 growing pigs	Dritz, 2002
Growing	6-10%	5-7%		Swann, 1969
pigs	9%	5.5%	Data from 200 overariments	Gropp et al., 1992
17-49 kg)	10.6%	4.5%	conducted between 1950-1985	Cromwell, 2002
Growing- finishing pigs	3.6%	3.1%	Review of experiments conducted between 1970-1990	Thomke, 1998
	4.2%	2.2%	Data from 443 experiments conducted between 1950-1985	Cromwell, 2002
(24-89 kg)	0%	0%	Controlled trial of 24009 growing pigs	Dritz, 2002
				trouw n

a Nutreco company

THE ECONOMIC COSTS OF WITHDRAWING ANTIMICROBIAL GROWTH PROMOTERS FROM THE LIVESTOCK SECTOR

by

Dr. Ramanan Laxminarayan at the Center for Disease Dynamics, Economics and Policy (CDDEP), Washington DC and Dr. Thomas Van Boeckel and Aude Teillant at Princeton University

OECD FOOD, AGRICULTURE AND FISHERIES PAPER N°78 © OECD 2015

iology	ORIGINAL RESEARCH published: 16 June 2022 doi: 10.3389/fmicb.2022.905050	TABLE 1	TABLE 1 Effect of supplementing different antibiotic growth promoters on the performance of broiler chicken during three consecutive production cycles.							
			С	v	СТ	В	L	т	SEM	N
	Unities for updates	Performa	nce during cycle 1							
		1-14 ^d								
ects of Dietary Ant	timicrobial	BWG	433.6	463.3	440.2	446.9	449.3	455.3	3.126	12
owth Promoters or	n Performance	FE	1.106	1.086	1.112	1.095	1.129	1.126	0.008	12
rameters and Abur	ndance and	1-21 ^d								
ersity of Broiler Cl	hicken Gut	BWG	774.0 ^c	868.0 ^a	836.3 ^{ab}	808.3bc	828.7 ^{ab}	867.8 ^a	7.211	12
crobiome and Sele	ection of	FE	1.193	1.165	1.202	1.213	1.239	1.214	0.007	12
libiotic Resistance	e Genes	1-35 ^d								
Sundar Paul ^{1*} , Savaram Venkata Rama Rad	o¹, Nagendra Hegde²,	BWG	2007	2046	1994	2022	2013	2040	12.50	12
a Venkata Lakshmi Narasimha Raju¹, Godu (umar¹, Prakki Santosh Phani Kumar¹, Sathi	Imagadda Narender Reddy1, i Mallick² and Madhuranjana Gargi²	FE	1.342	1.387	1.379	1.374	1.371	1.383	0.010	12
Vulrition Lab, ICAR-Directorate of Poultry Research, Poultry I 4, India, ² National Institute of Animal Biotechnology, Hyderal 4 Inflection, Veterinary and Ecological Sciences, University of sclorate of Poultry Research, Poultry Nutriton, Indian Counci	Nutrition, Indian Council of Agricultural Research, bad, India, ³ Department of Livestock and One Health, Liverpool, Liverpool, United Kingdom, ⁴ Director's Lab, il of Agricultural Research, Flyderabad, India	Performa 1-14 ^d	nce during cycle 2	2						
		BWG	412.0	434.2	418.2	434.8	427.2	419.0	3.99	13
		FE	1.190	1.169	1.191	1.179	1.193	1.211	0.004	13
		1-21 ^d								
		BWG	854.2	880.6	856.2	860.4	878.6	825.5	7.826	13
		FE	1.282	1.274	1.297	1.290	1.285	1.314	0.006	13
		1-35 ^d								
		BWG	2020	2016	2013	1960	1986	1931	18.76	13
		FE	1.465	1.490	1.523	1.516	1.489	1.527	0.010	13
		Performa	nce during cycle 3	1						
		1-14 ^d								
		BWG	379.1	392.1	377.8	385.5	386.2	362.2	3.373	14
		FE	1.279	1.273	1.280	1.269	1.293	1.280	0.004	14
		1-21 ^d								
		BWG	792.6	829.9	795.3	810.7	806.0	767.3	6.637	14
		FE	1.385	1.366	1.375	1.393	1.397	1.393	0.005	14
		1-35 ^d								

1834

1.604

BWG

FE

1842

1.622

1807

1.679

Shyam Sundar Paul1*, Savaram Venkata Rama Rao1, Nicola J. Williams³, Rudra Nath Chatterjee⁴, OPEN ACCESS Mantena Venkata Lakshmi Narasimha Raju¹, Goduma Vikas Kumar¹, Prakki Santosh Phani Kumar¹, Sathi Ma

Edited by: Bruce S. Seal.

regon State University Cascades Campus, United States

Reviewed by:

Frontiers | Frontiers in Microbiology

V, virginiamycin (40 g/ton); CT, chlortetracycline(330 g/ton); B, bacitracin methylene disalicylate (500 g/ton); L, lincomycin (40 g/ton); T, tylosin (500 g/ton); BWG, body weight gain; FE, body weight gain/feed intake; P, probability, N, number of replicate pens; SEM, standard error of the mean; Means having common superscripts in a row do not vary significantly (P < 0.05).

1833

1.614

1798

1.601

14.34

0.013

14

14

1876

1.617

trouw nutrition a Nutreco company

P-value

0.091

0.616

0.001

0.070

0.843

0.837

0.489 0.064

0.368 0.503

0.701 0.494

0.163 0.671

0.137 0.489

0.691

0.570

The Current Situation of Animal Production

Animal production with less or no antibiotics???

a Nutreco company

AGP Control from around the Globe:

Antimicrobial consumption and resistance in bacteria from humans and food-producing animals

Fourth joint inter-agency report on integrated analysis of antimicrobial agent consumption and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA

FIGURE 6 Comparison of population biomass-corrected consumption of antimicrobials^a (milligrams per kilogram estimated biomass) in humans and food-producing animals by country, in 29 EU/EEA countries for which data were available both for humans and food-producing animals, 2021. An asterisk (*) denotes that only community consumption was provided for human medicine. The weighted mean represents the populationweighted mean of data from included countries providing total consumption (community and hospital sectors combined).

The Netherlands reduced antibiotics by 71%...

Antibiotic sales 1999-2019 in kg (thousands)

Sources: Maran reports, Monitoring AMR and antibiotic usage in animals in the Netherlands Graph left: Maran 2020 Decline till 2021, Graph right: Maran 2022

For the Netherlands, this transformation resulted into increased performance, productivity and ultimately exports

Reduction antibiotic usage

Improved performance

Increased poultry meat exports

antibiotic usage remained competitive and export kept growing*

	2002 (AGP)	2009	2019 (-70% antibiotic usage)
ADG	54.5	60	61
FCR	1.73	1.66	1.61
Mortality	3.5%	3%	2.75%

Source: https://ourworldindata.org/grapher/poultry-production-tonnes?time=2021

trouw nutrition

a Nutreco company

WHO List of Medically Important Antimicrobials

A risk management tool for mitigating antimicrobial resistance due to non-human use

Previously known as the WHO Critically Important Antimicrobial List for Human Medicine World Health Organization

www.who.int/

Table 4. Categorization of antimicrobials not authorized for use in humans

	NOT AUTHORIZED FOR USE IN HUMANS Not medically important for humans	
Aminocoumarins	novobiocin	
Arsenicals	nitarsone, roxarson	e
Bicyclomycins	bicozamycin	
Halogenated 8-hydroxyquinolines	halquinol	
Ionophores (including polyethers)	laidlomycin lasalocid maduramicin monensin narasin salinomycin semduramicin	
Orthosomycins	avilamycin	
Phosphoglycolipids	bambermycin (= fla flavophospholipol moenomycin	vomycin)
Quinoxalines	carbadox, olaquind	ox

Consumer preference Marketing/commercial opportunities

https://poultryhealthtoday.com/survey-shows-us-poultry-industrys-evolving-yet-flexible-approach-to-coccidiosis-management/

https://www.fda.gov/media/163739/download

Medically important¹ antimicrobial drugs approved for use in food-producing animals² Actively marketed in 2021 Domestic sales and distribution data Reported by species-specific estimated sales

Species	Estimated Annual Totals (kg) ³	% Total	
Cattle	2,460,766	41%	
Swine	2,529,800	42%	
Chicken	158,342	3%	
Turkey	659,431	11%	
Other ⁴	181,383	3%	
Total	5,989,721	100%	

Not medically important¹ antimicrobial drugs approved for use in food-producing animals Actively marketed in 2021 Domestic sales and distribution data Reported by species-specific estimated sales

Species	Estimated Annual Totals (kg) ²	% Total
Cattle	3,290,231	64%
Swine	612,622	12%
Chicken	983,331	19%
Turkey	226,721	4%
Other ³	2,205	<1%
Total	5,115,111	100%

Historical Performance

What is happening in LATAM/Brazil?

With or Without Antibiotics

Growth Performance

Food Safety

Sustainability

Economics

Safe & sustainable alternatives do exist, with proven efficacy!

Impact of Antibiotics in Broiler Production

"Antibiotic Alternatives"

Different technologies Different modes of action Different approaches

How to use When to use Combinations

Animal Production Determinant Factors

HEALTH

LOSSES

NUTRITION

COST

ENVIRONMENT

PERSONNEL

MANAGEMENT

FACILITIES

Productivity + Efficiency

A Framework for Antibiotic Reduction in Animal Production:

- Biosecurity, biosecurity, biosecurity!
- Cleaning, washing & disinfection.
- Interval between batches/flocks/lots (also, litter management).
- Populational density & ventilation.
 - Vaccination program.
 - Breeders: nutrition & health.
 - ✓ Chick quality & 1st week ("If it doesn't start well, it doesn't end well!").
 - Personnel training & education.
 - Inspections & records keeping are critical!
 - → including rigorous control of therapeutic use of antibiotics!

- Feed & water quality/safety.
- **Feed & water additives.**

What's in it for me?

Preserving a critical tool to protect... ...our animals, ... our workers, ...and ourselves!

DOI: 10.1002/vms3.664
ORIGINAL ARTICLE
WILEY

Epidemiology and antimicrobial resistance of *Escherichia coli* in broiler chickens, farmworkers, and farm sewage in Bangladesh

 Amit Kumar Mandal¹
 Sudipta Talukder¹
 Md. Mehedi Hasan¹

 Syeda Tanjina Tasmim¹
 Mst. Sonia Parvin¹
 Md. Yamin Ali^{1,2}
 Md. Taohidul Islam¹

Vet Med Sci. 2022;8:187-199.

■ Cloacal swab (%) ■ Farm sewage (%) ■ Hand washed water (%)

FIGURE 2 Resistance profile of E. coli isolated from three types of samples

Think Differently!

By implementing healthier alternatives across the full value chain

Our Antibiotic Reduction Program Approach is designed on the latest insights and validated and perfected in practice.

Feed Management

- Microbiological quality of raw materials and feed
- Optimize Nutritional strategies
- Optimize Feed form and physical properties

Health Management

- Animal Health Monitoring
- Responsible Antibiotic use and targeted vaccination strategies
- Strategic use of Feed and water additives

Farm Management

- Biosecurity
- Farm Conditions
- Animal Management

Small switches Big change

Our Trouw Nutrition 5 step approach **integrated, step-by-step, holistic approach** to make the "switch" to the responsible use of antibiotics easy and manageable

a Nutreco company

Small switches Big change

Our Trouw Nutrition 5 step approach integrated, step-by-step, holistic approach to make the "switch" to the responsible use of antibiotics easy and manageable

5. Evaluate

4. Assist

Measure your success

Our 5 pillars, to secure health & performance

We are committed to empower you

to reduce the dependency on antibiotics.

Small steps all together make a significant reduction.

One switch at a time!

> A "one size fits all" program does not exist or work!

> It can, and it has been done! Many times!

> Are you ready/prepared to do it?

"We can't solve today's problems with the mentality that created them."

Albert Einstein

Trouw Talks Thank you. Allow us to be your Reliable Partner in your journey to

Get Future Ready...

a Nutreco company

Thank you...

To know more, follow Trouw Nutrition South Asia on:

F

Trouw Nutrition South Asia

www.trouwnutrition.in